某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,
(1)求取出的3件产品中恰好有一件次品的概率;
(2)求取出的3件产品中次品的件数X的概率分布列与期望.
设向量,点
为动点,已知
,且点P的轨迹C1。若抛物线C2的顶点在原点,与轨迹C1共焦点F,设抛物线C2与轨迹C1的交点分别为M、N。
(1)分虽求轨迹为C1与抛物线C2的方程;
(2)过F作一条与轴不垂直的直线,与曲线C1在点M、N左侧的部分交于C、D两点,与曲线C2在点M、N左侧的部分交于B、E两点,若G为CD的中点,H为BE的中点,问
是否为定值?若是,求出定值;若不是,请说明理由。
设的最大值为M。
(1)当时,求M的值。
(2)当取遍所有实数时,求M的最小值
;
(以下结论可供参考:对于,当
同号时取等号)
(3)对于第(2)小题中的,设数列
满足
,求证:
。
已知函数,且
(1)求的值域;
(2)定义在R上的函数满足
,且当
时
,求
在R上的解析式。
各项均为正数的数列
,
,且对满足
的正整数
都有
.
(1)当
时,求通项
;
(2)证明:对任意
,存在与
有关的常数
,使得对于每个正整数
,都有
.
已知函数
(Ⅰ)求函数f (x)的定义域
(Ⅱ)确定函数f (x)在定义域上的单调性,并证明你的结论.
(Ⅲ)若x>0时恒成立,求正整数k的最大值.