(本小题满分13分)设函数,其中常数
.
(Ⅰ)求函数的单调区间及单调性;
(Ⅱ)若当时
恒成立,求实数
的取值范围.
数列,
(
)由下列条件确定:①
;②当
时,
与
满足:当
时,
,
;当
时,
,
.
(Ⅰ)若,
,写出
,并求数列
的通项公式;
(Ⅱ)在数列中,若
(
,且
),试用
表示
;
(Ⅲ)在(Ⅰ)的条件下,设数列满足
,
,
(其中
为给定的不小于2的整数),求证:当
时,恒有
.
已知椭圆的离心率为
,直线
过点
,
,且与椭圆
相切于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点的直线
与椭圆
相交于不同的两点
、
,使得
?若存在,试求出直线
的方程;若不存在,请说明理由.
已知函数(
,
为正实数).
(Ⅰ)若,求曲线
在点
处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若函数的最小值为
,求
的取值范围.
|
如图,在四棱锥中,平面
平面
.底面
为矩形,
,
.
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为,求
的分布列及数学期望.