已知函数.
(Ⅰ)若求函数
的单调区间;
(Ⅱ)若在
上的最小值为
,求
的值;
(Ⅲ)若在
上恒成立,求
的取值范围.
.如图5,四棱锥中,底面
为矩形,
底面
,
,
分别为
的中点
(1)求证:面
;
(2)若,求
与面
所成角的余弦值
.将10个白小球中的3个染成红色,3个染成兰色,试解决下列问题:
(1)求取出3个小球中红球个数的分布列和数学期望;
(2)求取出3个小球中红球个数多于白球个数的概率
若向量,且
(1)求;
(2)求函数的值域
已知直线所经过的定点
恰好是椭圆
的一个焦点,且椭圆
上的点到点
的最大距离为3.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知圆,直线
.试证明:当点
在椭圆
上运动时,直线
与圆
恒相交,并求直线
被圆
所截得弦长
的取值范围.
(Ⅲ)设直线与椭圆交于
两点,若直线
交
轴于点
,且
,当
变化时,求
的值;
已知函数处有两上不同的极值点,设
在点
处切线为
其斜率为
;在点
利的切线为
,其斜率为
(1)若和
的值
(2)若,求
的取值范围。