游客
题文

某软件公司新开发一款学习软件,该软件把学科知识设计为由易到难共12关的闯关游戏.为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).该软件提供了三种奖励方案:第一种,每闯过一关奖励40慧币;第二种,闯过第一关奖励4慧币,以后每一关比前一关多奖励4慧币;第三种,闯过第一关奖励0.5 慧币,以后每一关比前一关奖励翻一番(即增加1倍),游戏规定:闯关者须于闯关前任选一种奖励方案.
(Ⅰ)设闯过n ( n∈N,且n≤12)关后三种奖励方案获得的慧币依次为,试求出An的表达式;
(Ⅱ)如果你是一名闯关者,为了得到更多的慧币,你应如何选择奖励方案?

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知双曲线 C : x 2 4 - y 2 = 1 P C 上的任意点.
(1)求证:点 P 到双曲线 C 的两条渐近线的距离的乘积是一个常数;
(2)设点 A 的坐标为 ( 3 , 0 ) ,求 P A 的最小值.

如图,某住宅小区的平面图呈圆心角为 120 ° 的扇形 A O B ,小区的两个出入口设置在点 A 及点 C 处,且小区里有一条平行于 B O 的小路 C D ,已知某人从 C 沿 C D 走到 D 用了10分钟,从 D 沿 D A 走到 A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径 O A 的长(精确到1米).

image.png

如图,在棱长为2的正方体 A B C D - A 1 B 1 C 1 D 1 中, E B C 1 的中点,求直线 D E 与平面 A B C D 所成角的大小(结果用反三角函数表示).

image.png

如图,已知点 P 在正方体 A B C D - A ` B ` C ` D ` 的对角线 B D ` 上, P D A = 60 ° .

image.png

(Ⅰ)求 D P C C ` 所成角的大小;
(Ⅱ)求DP与平面 A A ` D ` D 所成角的大小.

已知函数
(1)若恒成立,求实数a的取值范围;
(2)若,证明:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号