(本小题12分)已知二次函数
满足
且
.(1)求
的解析式; (2) 当
时,不等式:
恒成立,求实数
的范围.(3)设
,求
的最大值;
已知矩阵M=[
]N=[
].
(1)求矩阵MN;
(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.
已知矩阵A=[f(x)],B="[x" 1﹣x],
,若A=BC,求函数f(x)在[1,2]上的最小值.
如图四棱锥S﹣ABCD中,SD⊥AD,SD⊥CD,E是SC的中点,O是底面正方形ABCD的中心,AB=SD=6.
(1)求证:EO∥平面SAD;
(2)求直线EO与平面SCD所成的角.
已知椭圆C:
,(a>b>0)的两焦点分别为F1、F2,
,离心率
.过直线l:
上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆
(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点(
);
(3)当点M的纵坐标为1时,求△ABM的面积.
(本小题满分14分)函数
(1)
时,求函数
的单调区间;
(2)
时,求函数
在
上的最大值.