已知函数
(1)若
求函数
的单调区间;
(2)若
且对任意
,
恒成立,求实数
的取值范围;
(3)设函数
求证:
.
设定义在
上的函数
满足:对任意
,都有
,且当
时,
.
⑴求
的值;
⑵判断并证明函数
的单调性;
⑶如果
,解不等式
.
函数
在一个周期内的图象如图所示,
为图象的最高点,
、
为图象与
轴的交点,且
为正三角形。
(Ⅰ)求
的值及函数
的值域;
(Ⅱ)若
,且
,求
的值。
设平面内的向量
,
,
,点
是直线
上的一个动点,且
,求
的坐标及
的余弦值.
在△ABC中,角A,B,C所对的边长分别是a,b,c.
(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;
(2)若△ABC的面积S = 3
,且c =
,C =
,求a,b的值.
已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴,y轴于A,B两点,
OA|=a,|OB|=b(a>2,b>2).
(Ⅰ)求证:(a-2)(b-2)=2;
(Ⅱ)求线段AB中点的轨迹方程;
(Ⅲ)求△AOB面积的最小值.