游客
题文

(本小题满分14分)已知双曲线),分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线的右支交于两点,其中点位于第一象限内.
(1)求双曲线的方程;
(2)若直线分别与直线交于两点,求证:
(3)是否存在常数,使得恒成立?若存在,求出的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分10分)选修4-1:几何证明选讲如图,CD是Rt△ABC的斜边AB上的高,E是BC上任意一点,EF⊥AB于F。
求证:

(本小题满分12分)如图,抛物线的顶点O在坐标原点,焦点在y轴的负半轴上,过点M(0,-2)作直线l与抛物线相交于A,B两点,且满足=(-4,-12).

(1)求直线l和抛物线的方程;
(2)当抛物线上一动点P在点A和B之间运动时,求ΔABP面积的最大值.

(本小题满分12分)已知函数f(x)=.
(1)若f(x)在上是增函数,求实数a的取值范围;
(2)若x=3是f(x)的极值点,求f(x)在上的最小值和最大值。

(本小题满分12分)如图,在正三棱柱ABC-A1B1C1中,AB=4,AA1
点D是BC的中点,点E在AC上,且DE⊥A1E
.
(1)证明:平面A1DE⊥平面ACC1A1;
(2)求直线AD和平面A1DE所成角的正弦值。

(本小题满分12分)已知f(x)=奇函数,且
(1)求实数p , q的值。
(2)判断函数fx)在上的单调性,并证明。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号