(本小题满分13分)设,函数
,函数
,
.
(Ⅰ)判断函数在区间
上是否为单调函数,并说明理由;
(Ⅱ)若当时,对任意的
, 都有
成立,求实数
的取值范围;
(Ⅲ)当时,若存在直线
(
),使得曲线
与曲线
分别位于直线
的两侧,写出
的所有可能取值. (只需写出结论)
(本小题满分14分)设点为椭圆
的右焦点,点
在椭圆
上,已知椭圆
的离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过右焦点的直线
与椭圆相交于
,
两点,记
三条边所在直线的斜率的乘积为
,求
的最大值.
(本小题满分13分)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)
乘公共电汽车方案 |
10公里(含)内2元; 10公里以上部分,每增加1元可乘坐5公里(含). |
乘坐地铁方案(不含机场线) |
6公里(含)内3元; 6公里至12公里(含)4元; 12公里至22公里(含)5元; 22公里至32公里(含)6元; 32公里以上部分,每增加1元可乘坐20公里(含). |
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;
(Ⅱ)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价从这120人中分层抽样所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;
(Ⅲ)小李乘坐地铁从A地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s公里,试写出s的取值范围.(只需写出结论)
(本小题满分14分)如图,在五面体中,四边形
为正方形,
,平面
平面
,且
,
,点G是EF的中点.
(Ⅰ)证明:;
(Ⅱ)若点在线段
上,且
,求证:
//平面
;
(Ⅲ)已知空间中有一点O到五点的距离相等,请指出点
的位置. (只需写出结论)
(本小题满分13分)已知等差数列的前
项和为
,且满足
,
.
(Ⅰ)求数列的通项公式
及
;
(Ⅱ)若(
)成等比数列,求
的最小值.