(本小题12分) 已知函数,
.
(1)求函数的周期和最大值;
(2)设函数在
的区间上的图像与
轴的交点从左到右分别为
,图像的最高点为
,求
与
的夹角
的余弦值.
某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(
为正整数,2012年为第一年)的利润为
万元.设从2012年起的前
年,该厂不开发新项目的累计利润为
万元,开发新项目的累计利润为
万元(须扣除开发所投入资金).
(1)求,
的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.
如图,在四棱锥中,底面
是直角梯形,
∥
,
,
⊥平面SAD,点
是
的中点,且
,
.
(1)求四棱锥的体积;
(2)求证:∥平面
;
(3)求直线和平面
所成的角的正弦值.
某研究性学习小组对昼夜温差与某种子发芽数的关系进行研究,他们分别记录了四天中每天昼夜温差与每天100粒种子浸泡后的发芽数,得到如下资料:
时间 |
第一天 |
第二天 |
第三天 |
第四天 |
温差(℃) |
9 |
10 |
8 |
11 |
发芽数(粒) |
33 |
39 |
26 |
46 |
(1)求这四天浸泡种子的平均发芽率;
(2)若研究的一个项目在这四天中任选2天的种子发芽数来进行,记发芽的种子数分别为m,n(m<n),则以(m,n)的形式列出所有的基本事件,并求“m,n满足”的事件A的概率.
已知向量与
共线,设函数
.
(1)求函数的周期及最大值;
(2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有,边 BC=
,
,求 △ABC 的面积.
已知函数y=
(Ⅰ)求函数y的最小正周期;
(Ⅱ)求函数y的最大值.