为丰富课余生活,某班开展了一次有奖知识竞赛,在竞赛后把成绩(满分为100分,分数均为整数)进行统计,制成如图的频率分布表:
(Ⅰ)求的值;
(Ⅱ)若得分在之间的有机会得一等奖,已知其中男女比例为2∶3,如果一等奖只有两名,写出所有可能的结果,并求获得一等奖的全部为女生的概率.
如图,已知,
分别是椭圆
的左、右焦点,过
与
轴垂直的直线交椭圆于点
,且
(1)求椭圆的标准方程;
(2)已知点,问是否存在直线
与椭圆交于不同的两点
,
,且
的垂直平分线恰好过
点?若存在,求出直线
斜率的取值范围;若不存在,请说明理由.
(原创)已知
(1)若a>b>c>1,且a、b、c成等差数列,求证:;
(2)若m>n>0时,有,求证:
.
如图, 在直三棱柱中,
,
,
.
(1)求证:;
(2)问:是否在线段上存在一点
,使得
平面
?若存在,请证明;若不存在,请说明理由.
若是各项均不为零的等差数列,公差为
,
为其前
项和,且满足
,
.数列
满足
,
为数列
的前
项和.
(Ⅰ)求和
;
(Ⅱ)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
在中,角
的对边分别为
,且
.
(1)求的值;
(2)若成等差数列,且公差大于0,求
的值.