现有一个长、宽、高分别为5 dm、4 dm、3 dm的无盖长方体木箱(如图,AB=5 dm,BC=4 dm,AE=3 dm).
(1)求线段BG的长;
(2)现在箱外的点A处有一只蜘蛛,箱内的点G处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.
(请计算说明,木板的厚度忽略不计)
如图,在边长为1的正方形网格内有一个三角形ABC
(1)把△ABC沿着轴向右平移5个单位得到△A1B1C1,请你画出△A1B1C1
(2)请你以O点为位似中心在第一象限内画出△ABC的位似图形△A2B2C2,使得△ABC与△A2B2C2的位似比为1:2;
(3)请你写出△A2B2C2三个顶点的坐标。(3分)
若,
是一元二次方程
的两根,不解方程,求
+
的值。
如图,△ABC中,BC=6,求
及b、c。
如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).
(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣,
)].
如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,CD=4,求线段AB的长.