小王玩游戏:一张纸片,第一次将其撕成四小片,以后每次都将其中一片撕成更小的四片,如此进行下去。
(1)填空:当小王撕了3次后,共有 张纸片;
(2)填空:当小王撕了n次后,共有 张纸片.(用含n的代数式表示)
(3)小王说:我撕了若干次后,共有纸片2013张,小王说的对不对?若不对,请说明你的理由;若对的,请指出小王需撕多少次?
为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况,并将所得数据进行了统计,结果如图1所示.在这次调查中,一共抽查了____________名学生
求出扇形统计图(图2)中参加“音乐活动”项目所对扇形的圆心角的度数;
若该校有2 400名学生,请估计该校参加“美术活动”项目的人数.
解不等式组,并把解集在数轴上表示出来.
如图1,在平面直角坐标系中,已知点,点
在
正半轴上,且
.动点
在线段
上从点
向点
以每秒
个单位的速度运动,设运动时间为秒.点M、N在
轴上,且
是等边三角形.
求点B的坐标
求等边
的边长(用的代数式表示),并求出当等边
的顶点
运动到与原点
重合时的值;
如果取
的中点
,以
为边在
内部作如图2所示的矩形
,点
在线段
上.设等边
和矩形
重叠部分的面积为
,请求出当
秒时,
与的函数关系式,并求出
的最大值.
如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG.试猜想线段BG和AE的数量关系,请直接写出你得到的结论.
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.
小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡底跑到坡顶再原路返回坡底.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).小亮下坡的速度是▲m/min;=▲
求出AB所在直线的函数关系式
如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?