某批发公司批发某商品,每件商品进价80元,批发价120元,该批发商为鼓励经销商批发,决定当一次批发量超过100个时,每多批发一个,批发的全部商品的单价就降低0.04元,但最低批发价不能低于102元.
(1)当一次订购量为多少个时,每件商品的实际批发价为102元?
(2)当一次订购量为个, 每件商品的实际批发价为
元,写出函数
的表达式;
(3)根据市场调查发现,经销商一次最大定购量为个,则当经销商一次批发多少个零件时,该批发公司可获得最大利润.
(本小题满分12分)
设数列的前
项和为
,且
;数列
为等差数列,且
(1)求数列的通项公式;
(2)若为数列
的前
项和,求证:
(本小题满分12分)
已知的内角为A、B、C的对边分别为
,B为锐角,向量
(1)求B的大小;
(2)如果,求
的最大值.
已知函数只有一个零点
.
(Ⅰ)求函数的解析式;
(Ⅱ)若函数在区间
上有极值点,求
取值范围;
(Ⅲ)是否存在两个不等正数,当
时,函数
的值域也是
,若存在,求出所有这样的正数
;若不存在,请说明理由;
(本小题满分12分)
已知椭圆的左、右焦点为
、
,上顶点为A,直线
交椭圆于
. 如图所示沿
轴折起,使得平面
平面
. 点
为坐标原点.
( I ) 求三棱锥的体积;
(Ⅱ)线段上是否存在点
,使得
,若存在,请在图1中指出点
的坐标;若不存在,请说明理由.
(本小题满分12分)
如图,从点做x轴的垂线交曲线
于点
曲线在
点处的切线与x轴交于点
,再从
做x轴的垂线交曲线于点
,依次重复上述过程得到一系列点:
记
,
.
(Ⅰ)求点处的切线方程,并指出
与
的关系;
(Ⅱ)求