(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当BE为何值时,PA与平面PDE所成角的大小是45°?
(本小题满分9分)
己知是定义在R上的奇函数,当
时,
(其中
且
)
(1)求函数的解析式;
(2)当为何值时,
的值的小于0?
(本小题满分9分)
如图是某出租车在A、B两地间进行的一次业务活动中,离开A地的时间与相距A地的路程的函数图象. 其中纵轴s(km)表示该出租车与A地的距离,t(h)表示该出租车离开A地的时间.
(1)写出s与t的函数关系式;
(2)写出速度v(km/h)与时间t(h)的函数关系式;
(3)描述该出租车的行驶情况;
(本小题满分8分)
已知集合,
,
(1)若时,求实数
的取值范围;
(2)若时,求实数
的取值范围;
(本小题满分10分)已知二次函数f (x) = x2 – 16x + p + 3.
(1)若函数在区间上存在零点,求实数p的取值范围;
(2)问是否存在常数q(q≥0),当x∈[q,10]时,的值域为区间
,且
的长度为
12 – q.(注:区间[a,b](a<b)的长度为b – a)
(本小题满分10分)已知直线,一个圆的圆心
在
轴正半轴上,且该圆与直线
和
轴均相切.
(1)求该圆的方程;
(2)直线与圆
交于
两点,且
,求
的值.