双曲线C与椭圆有相同的焦点,直线y=
为C的一条渐近线.
求双曲线C的方程。
已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为和
,且满足
·
="t" (t≠0且t≠-1). 当t<0时,曲线C的两焦点为F1,F2,若曲线C上存在点Q使得∠F1QF2=120O,求t的取值范围.
已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为和
,且满足
·
="t" (t≠0且t≠-1).求动点P的轨迹C的方程.
设双曲线方程为,P为双曲线上任意一点,F为双曲线的一个焦点,讨论以|PF|为直径的圆与圆x2+y2=a2的位置关系.
设F1、F2为曲线C1∶的焦点,P是曲线C2∶
与C1的一个交点,求的值.