(本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 |
PM2.5(微克/立方米) |
频数(天) |
频 率 |
第一组 |
(0,15] |
4 |
0.1 |
第二组 |
(15,30] |
12 |
![]() |
第三组 |
(30,45] |
8 |
0.2 |
第四组 |
(45,60] |
8 |
0.2 |
第五组 |
(60,75] |
![]() |
0.1 |
第六组 |
(75,90) |
4 |
0.1 |
(Ⅰ)试确定的值,并写出该样本的众数和中位数(不必写出计算过程);
(Ⅱ)完成相应的频率分布直方图.
(Ⅲ)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
选修4—5:不等式选讲
若关于的不等式
有解,求实数
的取值范围。
(本小题满分10分)选修4-4:坐标系与参数方程.
已知曲线C:为参数,0≤
<2π),
(Ⅰ)将曲线化为普通方程;
(Ⅱ)求出该曲线在以直角坐标系原点为极点,轴非负半轴为极轴的极坐标系下的极坐标方程.
选修4—1:几何证明选讲
如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:
。
已知函数(
为自然对数的底数).
(1)求的最小值;
(2)不等式的解集为
,若
且
求实数
的取值范围;
(3)已知,且
,是否存在等差数列
和首项为
公比大于0的等比数列
,使得
?若存在,请求出数列
的通项公式.若不存在,请说明理由.
设椭圆、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
x |
3 |
—2 |
4 |
![]() |
![]() |
y |
![]() |
0 |
—4 |
![]() |
-![]() |
(1)求的标准方程;
(2)设直线与椭圆
交于不同两点
且
,请问是否存在这样的
直线过抛物线
的焦点
?若存在,求出直线
的方程;若不存在,说明理由.