(1)观察发现
如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.
如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为 .
(2)实践运用
如图(3):已知⊙O的直径CD为2,的度数为60°,点B是
的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,求BP+AP的最小值.
(3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使△PMN的周长最小,保留作图痕迹,不写作法.
某学校计划购买若干台电脑,现从两家商场了解到同一种型号电脑每台报价均为6000元,并且多买都有一定的优惠,甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%;乙商场优惠的条件是:每台优惠20%。
(1)什么情况下到甲商场购买更优惠?
(2)什么情况下到乙商场购买更优惠?
(3)什么情况下两家商场的收费相同?
如图,点D、E、F分别在AB、BC、AC上,且DE//AC,EF//AB ,下面写出了证明“∠A+∠B+∠C=180°”的部分过程,请完成填空:DE // AC,EF // AB ( )
,
( )
EF // AB.
( )
DE // AC.
( )
( )
.
甲乙两人检修一条长270米的自来水管道,甲每小时比乙多检修10米,两人从管道两端同时开始检修,3小时完成任务,甲、乙两人每小时各检修多少米?
如图,已知长方形ABCD四个顶点的坐标分别是,
,
,
.
(1)求四边形ABCD的面积是多少?
(2)将四边形ABCD向上平移个单位长度,求所得的四边形A’B’C’D’的四个顶点的坐标。
某班一次数学测试成绩如下:
63, 84, 91, 53, 69, 81, 57, 69, 91, 78,
75, 81, 80, 67, 76, 81, 79, 94, 61, 69,
89, 70, 70, 87, 81, 86, 90, 88, 85, 67.
补充完整频数分布表:
成绩 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
(2)补充完整图中的频数分布直方图:
(3)若80分以上(含80分)的成绩为优秀,那么该班这次数学测验的优秀率是多少?