(本小题满分12分)某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求
的分布列和数学期望.
(本小题满分12分)已知向量,
,设函数
.
(1)求函数的最小正周期和单调递增区间;
(2)当时,求函数
的值域.
(本小题满分12分)在中,角
所对的边分别为
,且满足
,
.
(1)求的面积;
(2)若,求
的值.
(本小题满分10分)已知定点,直线
(
为常数).
(1)若求实数的值;
(2)以为直径的圆与直线
相交所得的弦长为
,求实数
的值.
(本小题满分10分)
已知函数的定义域为
.
(1)求实数的取值范围;
(2)当正数满足
时,求
的最小值.
(本小题满分10分)
已知在直角坐标系中,圆
的参数方程为
为参数).
(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆
的极坐标方程;
(2)直线的坐标方程是
,且直线
与圆
交于
两点,试求弦
的长.