如图是一个半圆形湖面景点的平面示意图.已知为直径,且
km,
为圆心,
为圆周上靠近
的一点,
为圆周上靠近
的一点,且
∥
.现在准备从
经过
到
建造一条观光路线,其中
到
是圆弧
,
到
是线段
.设
,观光路线总长为
.
(1)求关于
的函数解析式,并指出该函数的定义域;
(2)求观光路线总长的最大值.
(13分)在的对边,已知
,
,又△ABC的面积
(1)求cosC的值;
(2)求△ABC的周长。
(13分)三棱锥P-ABC中,三条棱PC.AC.BC两两垂直,长都等于2,M为PA的中点,
(1)求异面直线CM与AB所成角θ的余弦值;
(2)过点M作一个与平面ABC平行的平面,将此三棱锥截成两部分,分别求这两部分的体积
(13分)在直角△ABC中AB=4,BC=3,AC=5,将此三角形绕AB边所在直线旋转一周得到一个圆锥
(1)求圆锥的侧面积和体积;
(2)求这个圆锥的内切球的表面积。
海面上相距10海里的A.B两船,B船在A船的北偏东45°方向上,两船同时接到指令同时驶向C岛,C岛在B船的南偏东75°方向上,行驶了80分钟后两船同时到达C岛,经测算,A船行驶了海里,求B船每小时的速度。
(本小题满分16分)已知数列,其中数列
是首项为2公比为
的等比数列,又
.
(Ⅰ)求数列的通项公式;
(Ⅱ)求使不等式成立的所有正整数
的值.