甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA表示货车离甲地距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地距离y(km)与时间x(h)之间的函数关系.请根据图象,解答下列问题:
(1)线段CD表示轿车在途中停留了h;
(2)求线段DE对应的函数解析式;
(3)求轿车从甲地出发后经过多长时间追上货车.
抛物线交
轴于
、
两点,交
轴于点
,顶点为
.
写出抛物线的对称轴及
、
两点的坐标(用含
的代数式表示)
连接
并以
为直径作⊙
,当
时,请判断⊙
是否经过点
,并说明理由;
在(2)题的条件下,点
是抛物线上任意一点,过
作直线垂直于对称轴,垂足为
. 那么是否存在这样的点
,使△
与以
、
、
为顶点的三角形相似?若存在,请求出点
的坐标;若不存在,请说明理由.
宏达纺织品有限公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润(万元)与投资金额(万元)之间满足正比例函数关系:
;如果单独投资B种产品,则所获利润(万元)与投资金额
(万元)之间满足二次函数关系:
.根据公司信息部的报告,
,
(万元)与投资金额
(万元)的部分对应值(如下表)
填空:
_______________________;
_______________________;
如果公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为
(万元),试写出
与某种产品的投资金额x之间的函数关系式.
请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
一个不透明的口袋里装着红、黄、绿三种只有颜色不同的球,其中红球有2个,黄球有1个,从中任意摸出1球是红球的概率为.
试求袋中绿球的个数;
第1次从袋中任意摸出l球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率
如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.求证:△DFA∽△ABE;
试求y与x之间的函数关系式,并求出自变量的取值范围.
如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D。求证:∠DAC=∠BAC;
若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,猜想:此时与∠DAC相等的角是哪一个?并证明你的结论。