游客
题文

如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4)C(-2,6)

(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1
(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

ΔABC 中, C = 90 ° AC > BC D AB 的中点. E 为直线 AC 上一动点,连接 DE ,过点 D DF DE ,交直线 BC 于点 F ,连接 EF

1 )如图 1 ,当 E 是线段 AC 的中点时,设 AE = a BF = b ,求 EF 的长(用含 a , b 的式子表示);

2 )当点 E 在线段 CA 的延长线上时,依题意补全图 2 ,用等式表示线段 AE EF BF 之间的数量关系,并证明.

在平面直角坐标系 xOy 中, M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 为抛物线 y = a x 2 + bx + c ( a > 0 ) 上任意两点,其中 x 1 < x 2

1)若抛物线的对称轴为 x = 1 ,当 x 1 , x 2 为何值时, y 1 = y 2 = c ;

2)设抛物线的对称轴为 x = t .若对于 x 1 + x 2 > 3 ,都有 y 1 < y 2 ,求 t 的取值范围.

小云统计了自己所住小区 5 1 日至 30 日的厨余垃圾分出量(单位:千克),相关信息如下:

a .小云所住小区 5 1 日至 30 日的厨余垃圾分出量统计图:

b .小云所住小区 5 1 日至 30 日分时段的厨余垃圾分出量的平均数如下:

1 )该小区 5 1 日至 30 日的厨余垃圾分出量的平均数约为 (结果取整数)

2 )已知该小区 4 月的厨余垃圾分出量的平均数为 60 ,则该小区 5 1 日至 30 日的厨余垃圾分出量的平均数约为 4 月的 倍(结果保留小数点后一位);

3 )记该小区 5 1 日至 10 日的厨余垃圾分出量的方差为 s 1 2 , 5 11 日至 20 日的厨余垃圾分出量的方差为 s 2 2 5 21 日至 30 日的厨余垃圾分出量的方差为 s 3 2 .直接写出 s 1 2 , s 2 2 , s 3 2 的大小关系.

小云在学习过程中遇到一个函数 y = 1 6 | x | ( x 2 - x + 1 ) ( x - 2 ) .下面是小云对其探究的过程,请补充完整:

1 )当 - 2 x < 0 时,对于函数 y 1 = | x | ,即 y 1 = - x ,当 - 2 x < 0 时, y 1 x 的增大而 ,且 y 1 > 0 ;对于函数 y 2 = x 2 - x + 1 ,当 - 2 x < 0 时, y 2 x 的增大而 ,且 y 2 > 0 ;结合上述分析,进一步探究发现,对于函数 y ,当 - 2 x < 0 时, y x 的增大而

2 )当 x 0 时,对于函数 y ,当 x 0 时, y x 的几组对应值如下表:

综合上表,进一步探究发现,当 x 0 时, y x 的增大而增大.在平面直角坐标系 xOy 中,画出当 x 0 时的函数 y 的图象.

3 )过点 ( 0 m ) m > 0 )作平行于 x 轴的直线 l ,结合( 1 )( 2 )的分析,解决问题:若直线 l 与函数 y = 1 6 | x | ( x 2 - x + 1 ) ( x - 2 ) 的图象有两个交点,则 m 的最大值是

如图, AB O 的直径, C BA 延长线上一点, CD O 的切线, D 为切点, OF AD 于点 E ,交 CD 于点 F

1 )求证: ADC = AOF

2 )若 sin C = 1 3 BD = 8 ,求 EF 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号