如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连结AD交BC于F,若AC=FC.
(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径r.
"互联网 "时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为 元 为正整数),每月的销售量为 条.
(1)直接写出 与 的函数关系式;
(2)设该网店每月获得的利润为 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
如图, 是 的切线,切点为 , 是 的直径,连接 交 于 .过 点作 于点 ,交 于 ,连接 , .
(1)求证: 是 的切线;
(2)求证: 为 的内心;
(3)若 , ,求 的长.
为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度 ,他站在距离教学楼底部 处6米远的地面 处,测得宣传牌的底部 的仰角为 ,同时测得教学楼窗户 处的仰角为 、 、 、 在同一直线上).然后,小明沿坡度 的斜坡从 走到 处,此时 正好与地面 平行.
(1)求点 到直线 的距离(结果保留根号);
(2)若小明在 处又测得宣传牌顶部 的仰角为 ,求宣传牌的高度 (结果精确到0.1米, , .
已知关于 的方程 有实数根.
(1)求 的取值范围;
(2)设方程的两根分别是 、 ,且 ,试求 的值.
某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.
类别 |
|
|
|
|
|
类型 |
新闻 |
体育 |
动画 |
娱乐 |
戏曲 |
人数 |
11 |
20 |
40 |
|
4 |
请你根据以上信息,回答下列问题:
(1)统计表中 的值为 ,统计图中 的值为 , 类对应扇形的圆心角为 度;
(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;
(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.