如图,二次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另一点A,顶点在第一象限.
(1)求n的值和点A坐标;
(2)已知一次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是二次函数图像的y轴右侧部分上的一个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.
因式分解(每题4分,共24分)
(1);
(2)
(3)
(4)(x+y)2+2(x+y)+1.
(5)(m2+n2)2-4m2n2
(6)
先化简,再求值(本题8分):(4ab3-8a2b2)÷4ab+(2a+b)(2a-b),其中a=2,b=1.
已知:如图1,在△ABC中,A、B、C的坐标分别为(1,0),(4,0),(0,2),点M为边BC上的中点,点N为边AB 上一点,且N的横坐标为方程2n2+5n-12=0一个根,
(1)求N的坐标和直线MN的解析式 ;(3+3)
(2)判断直线MN与BC的位置关系,并说明你的理由;(1+3)
(3)如图2,①在图2中作出△ABC的外接圆;②过Q(,0)作直线
⊥x轴,点P在直线
上,且在第一象限,试确定一个点P,使得∠CPB+∠CAB=180°,求出满足条件的P点坐标.
为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求AE的长(用x的代数式表示)
(2)当y=108m2时,求x的值
如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、E.连接DE,CD,DE与BC相交于点G.
(1)求证:DE是△ABC的外接圆的直径.
(2)设OG=3,CD=2,求⊙O的半径.