如图,某幢大楼的外墙边上竖直安装着一根旗杆,小明在离旗杆下方大楼底部
点24米的点
处放置一台测角仪,测角仪的高度
为1.5米,并在点
处测得旗杆下端
的仰角为40°,上端
的仰角为45°,求旗杆
的长度;(结果精确到0.1米,参考数据:
,
,
)
已知关于的一元二次方程
有两个实数根
和
.
(1)求实数的取值范围;
(2)当时,求
的值.
某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就没有奖.
(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是.
(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.
先化简:,当
时,再从-2<
<2的范围内选取一个合适的整数
代入求值.
如图1,有一张菱形纸片ABCD,AC=8, BD=6.
(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四边形,在图2中用实线画出你所拼成的平行四边形;若沿着BD剪开,请在图3中用实线画出拼成的平行四边形.并直接写出这两个平行四边形的周长.
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4中用实线画出拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)
如图,已知直线的图象与
轴、
轴交于
、
两点。
(1)求点、点
的坐标和△
的面积。
(2)求线段的长。
(3)若直线l经过原点,与线段交于点
(
为一动点),把△
的面积分成2︰1两部分,求直线L的解析式。