(本小题满分14分)已知椭圆C:的右焦点为F,右顶点为A,离心率为e,点满足条件.(Ⅰ)求m的值;(Ⅱ)设过点F的直线l与椭圆C相交于M,N两点,记和的面积分别为,,若,求直线l的方程.
定义:若数列对任意,满足(为常数),称数列为等差比数列. (1)若数列前项和满足,求的通项公式,并判断该数列是否为等差比数列; (2)若数列为等差数列,试判断是否一定为等差比数列,并说明理由; (3)若数列为等差比数列,定义中常数,数列的前项和为, 求证:.
在数列中,,构成公比不等于1的等比数列. (1)求证数列是等差数列; (2)求的值; (3)数列的前n项和为,若对任意均有成立,求实数的范围.
已知数列的前项和为,设,且. (1)证明{}是等比数列; (2)求与.
; (2)
已知中,分别是角所对的边 (1)用文字叙述并证明余弦定理; (2)若
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号