(本小题满分14分)
某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台. 现销售给A地10台,B地8台. 已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的费用分别为300元和500元.
(1)设从甲地调运x台至A地,求总费用y关于台数x的函数解析式;
(2)若总运费不超过9000元,问共有几种调运方案;
(3)求出总运费最低的调运方案及最低的费用.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是
,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.
如图, 是圆的直径, 垂直圆所在的平面, 是圆上的点.
(I)求证平面
平面
;
(II)若
,求证:二面角
的余弦值.
设向量 , , .
(I)若 ,求 的值.
(II)设函数 ,求 的最大值.
已知
,函数
.
(I)记
在区间
上的最大值为
,求
的表达式;
(II)是否存在
,使函数
在区间
内的图像上存在两点,在该两点处的切线相互垂直?若存在,求
的取值范围;若不存在,请说明理由.
过抛物线
的焦点
作斜率分别为
的两条不同的直线
,且
,
与
相交于点
,
与
相交于点
.以
为直径的圆
,圆
(
为圆心)的公共弦所在的直线记为
.
(I)若
,证明;
;
(II)若点
到直线
的距离的最小值为
,求抛物线
的方程.