(本小题满分12分)
某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温(°C)与该奶茶店的这种饮料销量
(杯),得到如下数据:
日 期 |
1月11日 |
1月12日 |
1月13日 |
1月14日 |
1月15日 |
平均气温![]() |
9 |
10 |
12 |
11 |
8 |
销量![]() |
23 |
25 |
30 |
26 |
21 |
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程.
(参考公式:.)
(本小题13分)已知,
.
(Ⅰ)求的值;(Ⅱ)求
的值.
(本小题满分12分)设椭圆(a>b>0)的左右焦点分别为F1、F2,点D在椭圆上,DF1⊥F1F2,
,△DF1F2的面积为
.
(1)求该椭圆的标准方程;
(2)若圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点,求出这个圆的方程.
(本小题满分12分)若数列满足
,
.
(1)设,问:
是否为等差数列?若是,请说明理由并求出通项
;
(2)设,求
的前n项和.
(本小题满分12分)在三角形ABC中,内角A、B、C的对边分别为a、b、c,若="(b,"
.cosB),
="(sinA," -a),且
⊥
.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求△ABC的面积.
(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1和BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F//平面ABE.