游客
题文

(本小题满分12分)
四棱锥S-ABCD中,侧面SAD是正三角形,底面ABCD是正方形,且平面SAD⊥平面ABCD,M、N分别是AB、SC的中点.
(Ⅰ)求证:MN∥平面SAD;
(Ⅱ)求二面角S-CM-D的余弦值.

科目 数学   题型 解答题   难度 中等
知识点: 平行线法
登录免费查看答案和解析
相关试题

(如图),具有公共轴的两个直角坐标平面所成的二面角等于.已知内的曲线的方程是,求曲线内的射影的曲线方程。

如图,在三棱锥中,底面,,点分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的大小;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.

如图,矩形ABCD所在的平面,M,N分别为AB,PC的中点。求证:平面

在正方体中,M、N、P分别是的中点,求证:平面MNP//平面

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号