(本小题满分10分)选修4—4;坐标系与参数方程
已知直线(
为参数),
.
(1)当时,求
与
的交点坐标;
(2)以坐标原点为圆心的圆与
相切,切点为
,
为
的中点,当
变化时,求
点的轨迹的参数方程,并指出它是什么曲线.
掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.
某一中学生心理咨询中心服务电话接通率为,某班3名同学商定明天分别就同一问题询问服务中心,且每人只拨打一次,求他们中成功咨询的人数X的分布列.
如图,电路由电池并联组成.电池
损坏的概率分别是0.3,0.2,0.2,求电路断电的概率.
某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求这位射手在三次射击中命中目标的概率;
(2)求这位射手在这次射击比赛中得分的均值.
甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:
选手 |
甲 |
乙 |
丙 |
概率 |
![]() |
![]() |
![]() |
若三人各射击一次,恰有k名选手击中目标的概率记为.
(1)求X的分布列;(2)若击中目标人数的均值是2,求P的值.