游客
题文

如图①,在四边形ABCD的边AB上任取一点E(点E不与A、B重合),分别连接ED、EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形AB-CD的边AB上的“强相似点”,解决问题:

(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由:
(2)如图②,在矩形ABCD中,A、B、C、D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;
(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

某工厂设计了一款产品,成本价为每件20元.投放市场进行试销,得到如下数据:

售价(元∕件)
……
30
40
50
60
……
日销售量(件)
……
500
400
300
200
……

(I)若日销售量(件)是售价(元∕件)的一次函数,求这个一次函数解析式;
(II)设这个工厂试销该产品每天获得的利润(利润=销售价-成本价)为W(元),当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?

如图,在一次课外数学实践活动中,小明站在操场的A处,他的两侧分别是旗杆CD和一幢教学楼EF,点A、D、F在同一直线上,从A处测得旗杆顶部和教学楼顶部的仰角分别为45°和60°,已知DF=14m,EF=15m,求旗杆CD高.(结果精确到0.01m,参考数据:≈ 1.414,≈ 1.732)

如图,的直径,点的延长线上,弦垂足为,连接
(I)求证:的切线;
(II)若半径为4,的长.

已知一次函数(b为常数)的图象与反比例函数的图象相交于点P(1,a).
(I) 求a的值及一次函数的解析式;
(II) 当x>1时,试判断的大小.并说明理由.

某小区20户家庭的日用电量(单位:千瓦时)统计如下:

日用电量(单位:千瓦时)
4
5
6
7
8
10
户数
1
2
4
6
5
2

(I)求这20个样本数据的平均数、众数和中位数;
(II)根据样本数据,估计该小区200户家庭中日均用电量不超过7千瓦时的约有多少户.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号