(本小题满分13分)
如图,⊙O在平面内,AB是⊙O的直径,
平面
,C为圆周上不同于A、B的任意一点,M,N,Q分别是PA,PC,PB的中点.
(1)求证:平面
;
(2)求证:平面平面
;
(3)求证:平面
.
已知sina=,aÎ(
,p),cosb=-
,b是第三象限的角.
⑴ 求cos(a-b)的值;
⑵ 求sin(a+b)的值;
⑶ 求tan2a的值.
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,
求⑴ ∠ADB的大小;⑵ BD的长.
已知函数;
(1)若函数在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
已知函数,
(1)求函数的定义域;
(2)求函数在区间
上的最小值;
(3)已知,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
已知函数定义域为R,且
,对任意
恒有
,
(1)求函数的表达式;
(2)若方程=
有三个实数解,求实数
的取值范围;