(本小题满分12分)设抛物线的顶点在坐标原点,焦点在
轴正半轴上,过点
的直线交抛物线于
两点,线段
的长是
,
的中点到
轴的距离是
.
(1)求抛物线的标准方程;
(2)在抛物线上是否存在不与原点重合的点,使得过点
的直线交抛物线于另一点
,满足
,且直线
与抛物线在点
处的切线垂直?并请说明理由.
已知;
若
是
的必要非充分条件,求实数
的取值范围。
(本小题满分12分)
已知函数f(x)=Asin(x+
)(x∈R,
>0, 0<
<
)的部分图象如图所示。
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x-)的单调递增区间。
(本小题满分12分)
已知函数是定义域为
的奇函数,(1)求实数
的值;(2)证明
是
上的单调函数;(3)若对于任意的
,不等式
恒成立,求
的取值范围.
(本小题满分12分)
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
(本小题满分12分)
如图,已知⊙
所在的平面,AB是⊙
的直径,
,
是⊙
上一点,且
,
分别为
中点。
(1)求证:平面
;
(2)求证:;
(3)求三棱锥-
的体积。