游客
题文

(本小题满分12分)已知椭圆长轴的端点为,且椭圆上的点到焦点的最小距离是
(1)求椭圆的标准方程;
(2)为原点,是椭圆上异于的任意一点,直线分别交轴于,问是否为定值,说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知圆,椭圆,若的离心率为,如果相交于两点,且线段恰为圆的直径,求直线与椭圆的方程。

已知椭圆的一个焦点是,且截直线所得弦长为,求该椭圆的方程.

如图,四棱锥的底面是矩形,⊥平面.

(1)求证:⊥平面
(2)求二面角余弦值的大小;
(3)求点到平面的距离.

已知是双曲线的两个焦点,点在双曲线上,且
,求证:

设命题是减函数,命题:关于的不等式的解集为,如果“”为真命题,“”为假命题,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号