已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.
(1)求该抛物线的方程;
(2)O为坐标原点,C为抛物线上一点,若,求λ的值.
已知圆C:与直线l:
,且直线l被圆C截得的弦长为
.
(Ⅰ)求的值;
(Ⅱ)当时,求过点(3,5)且与圆C相切的直线方程.
已知△ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),且AC,BC所在直
线的斜率之积等于m(m≠0),求顶点C的轨迹.
已知函数=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有实数根,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;
(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).
已知函数
(1)求函数的值域;
(2)若时,函数
的最小值为
,求
的值和函数
的最大值。
已知函数,
(1)当时,判断并证明
的奇偶性;
(2)是否存在实数,使得
是奇函数?若存在,求出
;若不存在,说明理由。