(本小题满分12分)如图,在正三棱柱中,△是边长为的等边三角形,平面,,分别是,的中点.(1)求证:∥平面;(2)若为上的动点,当与平面所成最大角的正切为时,求平面 与平面所成二面角(锐角)的余弦值.
设关于的不等式 (1)当a=1时解这个不等式。 (2)问a为何值时,这个不等式的解集为R。
已知直线的极坐标方程为,圆C的方程为 (1)化直线的方程为直角坐标方程 (2)化圆的方程为普通方程。 (3)求直线被圆截得的弦长。
(满分12分) (1)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围; (2)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围.
(满分12分)设数列前n项和为,且 (1)求的通项公式; (2)若数列满足且(n≥1),求数列的通项公式.
(满分12分)已知是一个等差数列,且 (1)求的通项及前n项和; (2)若,求的前n项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号