游客
题文

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,M是棱PD的中点,且PA=AB=AC=2,

(1)求证:CD⊥平面PAC;
(2)求二面角M-AB-C的大小;
(3)如果N是棱AB上一点,且直线CN与平面MAB所成角的正弦值为,求的值.

科目 数学   题型 解答题   难度 较易
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

已知椭圆,右焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆交于两点,为椭圆上异于的动点.
(1)若直线的斜率都存在,证明:
(2)若,直线分别与直线相交于点,直线与椭圆相交于点(异于点), 求证:三点共线.

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若存在,使得成立,求的取值范围.

如图,在五面体中,四边形是边长为4的正方形,,平面平面,且,点G是EF的中点.

(Ⅰ)证明:平面
(Ⅱ)若直线BF与平面所成角的正弦值为,求的长;
(Ⅲ)判断线段上是否存在一点,使//平面?若存在,求出的值;若不存在,说明理由.

某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为

专业
性别
中文
英语
数学
体育


1

1

1
1
1
1


现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ)求的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量的分布列及其数学期望

设函数
(Ⅰ)当时,求函数的值域;
(Ⅱ)已知函数的图象与直线有交点,求相邻两个交点间的最短距离.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号