游客
题文

(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).

(1)求关于的函数关系式;
(2)求的最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:


喜爱打篮球
不喜爱打篮球
合计
男生

5

女生
10


合计


50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求不全被选中的概率.
下面的临界值表供参考:


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

(参考公式:,其中)

已知复数,,且
(1)若,求的值;
(2)设,求的最小正周期和单调减区间.

已知中,,记

(1)求关于的表达式;
(2)求的值域;

如图,我市拟在长为的道路的一侧修建一条运动赛道。赛道的前一部分为曲线段,该曲线段为函数的图像,且图像的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定

(1)求的值和两点间的距离
(2)应如何设计,才能使折线段赛道最长

中,为锐角,角所对应的边分别为,且
(I)求的值;(II)若,求的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号