(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为
(m2).
(1)求关于
的函数关系式;
(2)求的最大值.
某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中"√"表示购买,"×"表示未购买.
![]() |
甲 |
乙 |
丙 |
丁 |
100 | √ |
× |
√ |
√ |
217 | × |
√ |
× |
√ |
200 | √ |
√ |
√ |
× |
300 | √ |
× |
√ |
× |
85 | √ |
× |
× |
× |
98 | × |
√ |
× |
× |
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
已知等差数列
满足
.
(Ⅰ)求
的通项公式;
(Ⅱ)设等比数列
满足
,问:
与数列
的第几项相等?
已知函数
.
(Ⅰ)求
的最小正周期;
(Ⅱ)求
在区间
上的最小值.
已知数列
满足:
,且
.记集合
.
(Ⅰ)若
,写出集合
的所有元素;
(Ⅱ)若集合
存在一个元素是3的倍数,证明:
的所有元素都是3的倍数;
(Ⅲ)求集合
的元素个数的最大值.
已知椭圆
:
的离心率为
,点
和点
都在椭圆
上,直线
交
轴于点
.
(Ⅰ)求椭圆
的方程,并求点
的坐标(用
,
表示);
(Ⅱ)设
为原点,点
与点
关于
轴对称,直线
交
轴于点
.问:
轴上是否存在点
,使得
?若存在,求点
的坐标;若不存在,说明理由.