如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形
构成,其中
为
的中点.现准备在公园里建设一条四边形健康跑道
,按实际需要,四边形
的两个顶点
分别在线段
上,另外两个顶点
在半圆上,
,且
间的距离为1km.设四边形
的周长为
km.
(1)若分别为
的中点,求
长;
(2)求周长的最大值.
已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为,
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
如图,在直角梯形ABEF中,,
,讲DCEF沿CD折起,使得
,得到一个几何体,
(1)求证:平面ADF;
(2)求证:AF平面ABCD;
(3)求三棱锥E-BCD的体积.
已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)
(2)抽取的100的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,若在该样本中,数学成绩优秀率是30%,求a,b的值:
人数 |
数学 |
|||
优秀 |
良好 |
及格 |
||
地理 |
优秀 |
7 |
20 |
5 |
良好 |
9 |
18 |
6 |
|
及格 |
a |
4 |
b |
(3)在地理成绩及格的学生中,已知求数学成绩为优秀的人数比及格的人数少的概率.
已知函数的部分图像如图所示.
(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)的内角分别是A,B,C.若f(A)=1,
,求sinC的值.
已知函数f(x)=ax2+ln(x+1).
(1)当a=时,求函数f(x)的单调区间;
(2)当时,函数y=f(x)图像上的点都在
所表示的平面区域内,求实数a的取值范围;
(3)求证:(其中
,e是自然数对数的底数)