如图,已知数轴上点A表示的数为8,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数 ,经t秒后点P走过的路程为 (用含t的代数式表示);
(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多长时间点P就能追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
解方程:
.解方程:
如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A、D,且AB=BD.(1)求点A的坐标:
(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;
(3)如图2,若将抛物线C1:“y1=x2+1”改
为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值▲(直接写结果).
某蔬菜基地,一年中修建了一些蔬菜大棚,平均每公顷修建大棚要用的支架、塑料膜等固定材料的费用为27000元,此外还要购置喷灌设备,这项费用(元)与大棚面积(公顷)的平方成正比,比例系数为9000,每公顷大棚的年平均毛收入为75000元.(1)若
该基地一年中的纯收益(扣除修建费用后)为60000元.一年中该基地修建了多少公顷蔬菜大棚?
(2)若要使纯收益达到最大,请问应修建多少公顷大棚?并说明理由.
如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5.(1)求证:AD平分∠BDC;
(2)求AC的长;
(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.