某校高二年级的一次数学考试中,为了分析学生的得分情况,随机抽取名同学的成绩,数据的分组统计表如下:
分组 |
频数 |
频率 |
频率/组距 |
(40,50] |
2 |
0.02 |
0.002 |
(50,60] |
4 |
0.04 |
0.004 |
(60,70] |
11 |
0.11 |
0.011 |
(70,80] |
38 |
0.38 |
0.038 |
(80,90] |
![]() |
![]() |
![]() |
(90,100] |
11 |
0.11 |
0.011 |
合计 |
![]() |
![]() |
![]() |
(1)求出表中的值;
(2)为了了解某些同学在数学学习中存在的问题,现从样本中分数在中的6位同学中任意抽取2人进行调查,求分数在
和
中各有一人的概率.
知函数.
(1)求函数的反函数
;
(2)若时,不等式
恒成立,试求实数
的范围.
设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;
(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
已知函数在
处取得极值.
(1)讨论和
是函数
的极大值还是极小值;
(2)过点作曲线
的切线,求此切线方程.
|
已知函数(a<0,
,设关于x的方程
的两根为
,
的两实根为
、
.
设函数
(1)解不等式f(x)<0;
(2)试推断函数f(x)是否存在最小值?若存在,求出其最小值;若不存在,说明理由.