(本小题满分13分)某医药公司研制了甲、乙两种抗“ABL病毒”的药物,用若干试验组进行临床对比试验.每个试验组由4位该病毒的感染者组成,其中2人服用甲种药物,另2人服用乙种药物,然后观察疗效.若在一个试验组中,服用甲种药物有效的人数比服用乙种药物有效的人数多,就称该试验组为甲类组.设每为感染者服用甲种药物有效的概率为,服用乙种药物有效的概率为
.
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.
(本小题满分12分)
2010年夏舟曲发生特大泥石流,为灾后重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自福建省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同。
(Ⅰ)列举所有企业的中标情况;
(Ⅱ)在中标的企业中,至少有一家来自福建省的概率是多少?
(本题满分14分) 已知数列{an}的前n项和为Sn ,点(n,)在直线y = x +上.数列{bn}满足
bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9项和为153.
(1)求数列{an},{bn}的通项公式;
(2)设cn=,数列{cn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值.
(本题满分14分) 已知函数其中
(1)当时,求曲线
处的切线的斜率;
(2)当时,求函数
的单调区间与极值。
(本题满分13分)如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=.
(1)求证:PA⊥B1D1;
(2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.
(本题满分13分)某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为
.当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量
(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?