(本小题满分12分)已知广东省某校高三(1)班有名学生,从中按照系统抽样的方法抽取
名学生.
(1)若第组抽出的号码为
,写出所有被抽出学生的号码;
(2)分别统计这名学生某高校自主招生考试成绩(满分:
分),获得成绩数据的茎叶图如图所示,现从这
名学生中随机抽取
名学生成绩,其中有
名学生的成绩是超过
的,求
的分布列与期望.
(本题12分)设为奇函数,其图象在点
处的切线与直线
垂直,导函数
的最小值为
.
(1)求函数的解析式;
(2)求函数f(x)在[-1,3]上的最大值和最小值.
(本题12分)高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)利用频率分布直方图估计本次测试成绩的中位数。
(本题12分)已知函数,当x = -1时取得极大值7,当x = 3时
取得极小值;(1)求的值;(2)求
的极小值。
(本题10分)已知椭圆的中心在原点,焦点在轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求的取值范围。
(本小题满分14分)
设函数.
(1)试问函数能否在
时取得极值?说明理由;
(2)若a=-1,当时,函数
与
的图像有两个公共点,求c的取值范围.