选修4—4坐标系与参数方程
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为
,曲线D的参数方程为
(
为参数).
(Ⅰ)把C的极坐标方程化为直角坐标方程;
(Ⅱ)判定曲线C与曲线D间的位置关系.
已知函数
(1)当时,求函数
的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
已知为锐角,且
,函数
,数列{
}的首项
.
(1)求函数的表达式;
(2)求数列的前
项和
.
的外接圆半径
,角
的对边分别是
,且
(1)求角和边长
;
(2)求的最大值及取得最大值时的
的值,并判断此时三角形的形状.
已知函数.
(1)若的解集为
,求实数
的值.
(2)当且
时,解关于
的不等式
.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.
(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.