游客
题文

(本小题满分15分)如图,四棱锥的底面是正方形,侧棱⊥底面
的中点.

(Ⅰ)证明://平面
(Ⅱ)求二面角的平面角的余弦值;
(Ⅲ)在棱上是否存在点,使⊥平面?证明你的结论.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

(本小题满分13分)如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面的菱形,的中点.

(Ⅰ)求证:
(Ⅱ)在棱上是否存在一点,使得四点共面?若存在,指出点的位置并证明;若不存在,请说明理由;
(Ⅲ)求点到平面的距离.

(本小题满分12分)已知在中,三条边所对的角分别为,向量,且满足
(Ⅰ)求角的大小;
(Ⅱ)若成等比数列,且,求边的值并求外接圆的面积.

(本小题满分12分)某城市持续性的雾霾天气严重威胁着人们的身体健康,汽车的尾气排放是造成雾霾天气的重要因素之一,为此该城市实施了机动车尾号限行政策。现有家报社想调查了解该市区公民对“车辆限行”的态度,在该城市里随机抽查了50人,将调查情况进行整理后制成下表:

年龄(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
2
4
20
14
5
5
支持的人数
1
3
15
11
4
4


(Ⅰ)请估计该市公民对“车辆限行”的支持率(答案用百分比表示);
(Ⅱ)若从年龄在的被调查者中采用分层抽样选取3人进行跟踪调查,求选取的3人中有2人不支持“车辆限行”的概率.

(本小题满分12分)等差数列满足:,其中为数列项和.
(Ⅰ)求数列通项公式;
(Ⅱ)若,且成等比数列,求的值.

(本小题满分13分)已知函数(其中为常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,对于任意大于1的实数,恒有成立,求实数的取值范围;
(Ⅲ)当时,设函数的3个极值点为,且.求证:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号