如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.
(1)写出反比例函数解析式;
(2)求证:△ACB∽△NOM;
(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.
如图,在中,
,以AC为直径作
,交AB于D,过O作OE//AB,交BC于E,求证:ED为
的切线.
某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图(1),图(2),要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:在这次研究中,一共调查了多少名学生?
喜欢排球的人数在扇形统计图中所占的圆心角是多少度?
补全频数分布折线统计图.
已知,如图,梯形ABCD中,AB∥CD,AD=BC,E是底边AB的中点,求证:DE=CE.
解方程
如图, 四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4). 点从
出发以每秒2个单位长度的速度向
运动;点
从
同时出发,以每秒1个单位长度的速度向
运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点
作
垂直
轴于点
,连结AC交NP于Q,连结MQ.
点(填M或N)能到达终点;
求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标,若不存在,
说明理由.