如图,将边长为4的等边三角形AOB放置于平面直角坐标系xOy中,F是AB边上的动点(不与点A,B重合),过点F的反比例函数(
,
)与OA边交于点E,过点F作FC⊥x轴于点C,连接EF,OF.
(1)若,求反比例函数的解析式.
(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与轴的位置关系,并说明理由.
(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.
如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.
(1)用树状图或列表法求小华、小丽获胜的概率;
(2)这个游戏规则对双方公平吗?请判断并说明理由.
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)画出将△OAB绕原点逆时针旋转90°后所得的△OA1B1,并写出点A1、B1的坐标;
(2)作△OAB关于原点O的中心对称图形,写出对称点
、
的坐标.
将分别标有数学2,3,5的三张质地,大小完全一样的卡片背面朝上放在桌面上,
(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.
确定下列抛物线的开口方向、对称轴和顶点坐标
(1)(2)
解方程
(1)(2)x2﹣5x﹣6="0"