(本小题满分12分)已知数列为等差数列,其中
.
(1)求数列的通项公式;
(2)若数列满足
,
为数列
的前
项和,当不等式
(
)恒成立时,求实数
的取值范围.
设函数(Ⅰ) 当
时,求函数
的极值;
(Ⅱ)当时,讨论函数
的单调性.(Ⅲ)(理科)若对任意
及任意
,恒有
成立,求实数
的取值范围.
已知椭圆的右焦点为F,上顶点为A,P为C
上任一点,MN是圆
的一条直径,若与AF平行且在y轴上的截距为
的直线
恰好与圆
相切.
(Ⅰ)已知椭圆的离心率;
(Ⅱ)若的最大值为49,求椭圆C
的方程.
如图,在三棱锥中,侧面
与侧面
均为等边三角形,
,
为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)求二面角的余弦值.
盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品;(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.
已知在中,
所对的边分别为
,若
且
.
(Ⅰ)求角A、B、C的大小;
(Ⅱ)设函数,求函数
的单调递增区间,并指出它相邻两对称轴间的距离.