(文科)已知动直线与椭圆:交于两不同点,且的面积,其中为坐标原点.(Ⅰ)证明:和均为定值;(Ⅱ)设线段的中点为,求的最大值;(Ⅲ)椭圆上是否存在三点,使得?若存在,判断的形状;若不存在,请说明理由.
设集合,从集合中各取2个元素组成没有重复数字的四位数. 可组成多少个这样的四位数? 有多少个是2的倍数或是5的倍数?
求与直线所围成图形的面积。
设函数的图像与直线相切于点(1,-11) (Ⅰ)求的值; (Ⅱ)讨论函数的单调性。
(本小题满分12分) 已知函数对任意的实数,都有,且当时, (1)求; (2)证明函数在区间上是单调递减的函数; (3)若解不等式.
( 本小题满分12分) 已知 (1)求的定义域、值域; (2)判断的奇偶性并说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号