(理科)已知椭圆经过点,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点,试问以线段为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.
(本小题满分12分) 设,求直线AD与平面的夹角。
已知命题若是的充分不必要条件,求的取值范围
(本小题分) 设是数列的前项和,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)记,数列的前项和为,求使的的最小值; (Ⅲ)设正数数列满足,求数列中的最大项.
(本小题满分 分) 已知直线与抛物线相切于点,且与轴交于点,定点的坐标为. (Ⅰ)若动点满足,求点的轨迹; (Ⅱ)若过点的直线(斜率不等于零)与(I)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围.
(本小题满分分) 设函数. (Ⅰ)求函数单调区间; (Ⅱ)若恒成立,求的取值范围;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号