如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.
(1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
设函数.
(1)当时,解关于
的不等式
;
(2)如果,
,求
的取值范围.
已知圆经过点
、
,并且直线
:
平分圆
.
(Ⅰ)求圆的方程;
(Ⅱ)若过点,且斜率为
的直线
与圆
有两个不同的交点
.
(ⅰ)求实数的取值范围;
(ⅱ)若,求
的值.
设两个向量、
,满足
,
,
、
的夹角为
,若向量
与向量
的夹角为钝角,求实数
的取值范围.
在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为
的考生有
人.
(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数;
(Ⅱ)若等级分别对应
分,
分,
分,
分,
分,求该考场考生“数学与逻辑”科目的平均分;
(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为
的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为
的概率.
甲、乙、丙三人中要选一人去参加唱歌比赛,于是他们制定了一个规则,规则为:(如图)以为起点,再从
,这
个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为
,若
就让甲去;若
就让乙去;若
就是丙去.
(Ⅰ)写出数量积的所有可能取值;
(Ⅱ)求甲、乙、丙三人去参加比赛的概率,并由求出的概率来说明这个规则公平吗?